Microbial Ecology of Casing Soils and Food Safety Interventions to Reduce *Listeria monocytogenes* and *Salmonella* spp. Contamination of Fresh Mushrooms

By Rachel O’Patchen
Advisor: Dr. Luke LaBorde
June 14, 2010
Overview

• Background and Significance
 – Food Safety
 – Casing Soil

• Hypothesis and Objectives

• Research Strategy
 – Experimental Design
 – Preliminary Data
 – Expected Results
Consumer Trends: Fresh and Processed Sales

- **1980-1981**
 - Fresh Market Sales (Whole and Sliced): 41%
 - Sales for Processing (Jars, Canned, Frozen): 59%

- **1996-1997**
 - Fresh Market Sales (Whole and Sliced): 29%
 - Sales for Processing (Jars, Canned, Frozen): 71%

- **2008-2009**
 - Fresh Market Sales (Whole and Sliced): 85%
 - Sales for Processing (Jars, Canned, Frozen): 15%

= Fresh Market Sales (Whole and Sliced)

= Sales for Processing (Jars, Canned, Frozen)

NASS, 2009
Significance

Contamination

1988 - *L. innocua* found in 11% of supermarket mushroom samples (Heisick, et. al)

1989 - *L. monocytogenes* found in 10% of purchased mushrooms (Van Netten, et al)

1999 - *L. monocytogenes*, and *Salmonella* sp. found in 1% and 5% of mushrooms, respectively (Samadpour, et. al)

2001 - *Salmonella* sp. isolated from mushrooms, casing, and compost in Northern Ireland (Meikle)
Significance

Recalls - *Listeria monocytogenes*

- 2003 - Georgia Department of Agriculture (FDA)
- 2006 - Ohio Department of Agriculture (FDA)
- 2008 - Canadian Food Inspection Agency (CFIA)
Food Safety in Mushroom Production

Growing Environment

People
Substrate
Casing
Food Safety in Mushroom Production

Growing Environment

People

Substrate

Casing

Beelman, LaBorde, Nieto-Montenegro
Food Safety in Mushroom Production

Growing Environment
People
Substrate
Casing
Food Safety in Mushroom Production

Growing Environment
People
Substrate
Casing
Mushroom Casing Layer

- Peat moss, CaCO$_3$ (lime), and water
- Two main types: light and dark
- Use of dark peat in the industry
 - Heavier texture
 - Higher water-holding capacity

Peatmoss.com, Hoitink, and Fahy 1986
Background

$L.\ Monocytogenes$ in Light Peat

Log CFU per gram casing soil (wet wt.)

Time (days)

Control-Sterile Casing
Control-Unsterile Casing

Chikthimmah, 2006
Dark Peat Casing Soil

- Plant Pathology research has shown more plant disease with use of dark peat
 - More decomposed organic matter
 - Lower levels of indigenous microflora

Hoitink and Fahy, 1986
Hypothesis

Commercial dark peats contain lower levels of indigenous microflora compared to light peat.
Objectives

1. Determine the levels of indigenous microflora in dark peat compared to light peat
2. Determine the fate of human pathogens in casing soil held under commercial growing conditions
3. Determine the fate of human pathogens in casing soil held under commercial growing conditions in a growing system (colonized with *Agaricus bisporus*)
4. Determine the effect of supplementing irrigation water with sanitizers on pathogen reduction
5. Evaluate if there is a hurdle effect with a certain light:dark peat ratio combined with irrigation water supplementation
Objective 1 - Experimental Design (No Agaricus)

Microbiology of Light and Dark Peat

Light Peat

Sylvan Dark Peat

Harte Dark Peat

Combined with Buffered Peptone Water

Plated and enumerated

PCA (Aerobic bacteria)

AIA (Actinomycetes)

DRBC (Yeasts and molds)
Objective 1 – Results (No Agaricus)

Cultural Enumeration of Indigenous Microflora in Three Peat Casing Soils

<table>
<thead>
<tr>
<th>Category</th>
<th>Dark Peat (Harte)</th>
<th>Dark Peat (Sylvan)</th>
<th>Light Peat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerobic Bacteria</td>
<td>6.59</td>
<td>6.99</td>
<td>8.44</td>
</tr>
<tr>
<td>Actinomycetes</td>
<td>6.69</td>
<td>6.69</td>
<td>7.80</td>
</tr>
<tr>
<td>Yeasts and Molds</td>
<td>5.18</td>
<td>5.03</td>
<td>6.78</td>
</tr>
</tbody>
</table>

Error bars represent the standard deviation from the mean from 3 separate trials. Columns with different letters represent a significant difference at $\alpha = 0.05$ for each category.
Objective 1 – Conclusions (No Agaricus)

• There is a significantly lower amount of aerobic bacteria, actinomycetes, and yeasts and molds in some dark peat than in the light peat.

• Will this lower level of indigenous microflora have an effect on the survival of *L. monocytogenes* and *Salmonella* introduced into the soil?
Objective 2 - Experimental Design (No Agaricus)

- Dark Peat (Harte)
- Dark Peat (Sylvan)
- Light Peat

Inoculate with *Listeria* and *Salmonella*

Incubate at 22 °C for 28 days

Sample and enumerate *Listeria* and *Salmonella* levels over time
Objective 2 - Experimental Design

Challenge Study

Survival of *L. monocytogenes* and *Salmonella* spp. in light and dark peat

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive Controls</td>
<td>All three peats autoclaved separately & inoculated with cocktail of Salmonella and Listeria</td>
</tr>
<tr>
<td>Negative Controls</td>
<td>All three peats inoculated with 0.75% saline</td>
</tr>
<tr>
<td>Samples</td>
<td>All three peats inoculated with cocktail of Salmonella and Listeria</td>
</tr>
</tbody>
</table>
Error bars represent the standard deviation from the mean of three trials. An asterisk (*) denotes a significant difference ($\alpha=0.05$) between the blonde peat and both dark peats.
Error bars represent the standard deviation from the mean of three trials. An asterisk (*) denotes a significant difference ($\alpha=0.05$) between the blonde peat and both dark peats.
Listeria and Salmonella both die off more rapidly in light peat compared to dark peat.
Objective 3

Challenge Study - Colonized with *Agaricus bisporus*
Objective 3 - Experimental Design (With Agaricus)

Mix casing soils in three ratios with CAC:

- 0% Dark Peat, 100% Light Peat, 1.5% CAC
- 20% Dark Peat, 80% Light Peat, 1.5% CAC
- 40% Dark Peat, 60% Light Peat, 1.5% CAC

Inoculate with pathogen cocktail

Add casing to spawned compost in deli containers

Grow in temperature/humidity controlled chamber

Cultivate mushrooms, sampling periodically and enumerating *Salmonella* and *Listeria* over time (soil + mushrooms)
Objective 3 - Expected Results (With Agaricus)

- Higher percentages of dark peat will have increased survival of *Listeria* and *Salmonella*

- Possible transfer of pathogens to mushrooms
Supplementation of Irrigation Water with Sanitizers

- Hydrogen Peroxide as sanitizer
- Shown to reduce spoilage microorganisms
- No decrease in mushroom yield

Chikthimmah, et. al 2006
Objectives 4 and 5 – Expected Results

- Hydrogen peroxide will result in additional decreases in levels of *Listeria* and *Salmonella*
• Dark peats appear to enhance the survival of *Listeria* and *Salmonella*

• Studies are now underway to determine:
 1. The role of *Agaricus bisporus*
 2. How much dark peat is too much?
 3. The use of sanitizers in irrigation water
Giorgi Mushroom Company
Dr. Luke LaBorde
Dr. John Pecchia
Dr. Catherine Cutter
Dr. Robert Beelman
Dr. Naveen Chikthimmah
Food Science Faculty, Staff, and Students
Questions?
References

Anon, press release. Mushrooms Recalled Due to Possible Listeria Contamination. February 2009.
Canadian Sphagnum Peat
Peatmoss.com